3.1474 \(\int \frac {(c+d x)^{3/2}}{\sqrt {a+b x}} \, dx\)

Optimal. Leaf size=113 \[ \frac {3 (b c-a d)^2 \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{4 b^{5/2} \sqrt {d}}+\frac {3 \sqrt {a+b x} \sqrt {c+d x} (b c-a d)}{4 b^2}+\frac {\sqrt {a+b x} (c+d x)^{3/2}}{2 b} \]

[Out]

3/4*(-a*d+b*c)^2*arctanh(d^(1/2)*(b*x+a)^(1/2)/b^(1/2)/(d*x+c)^(1/2))/b^(5/2)/d^(1/2)+1/2*(d*x+c)^(3/2)*(b*x+a
)^(1/2)/b+3/4*(-a*d+b*c)*(b*x+a)^(1/2)*(d*x+c)^(1/2)/b^2

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 113, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {50, 63, 217, 206} \[ \frac {3 \sqrt {a+b x} \sqrt {c+d x} (b c-a d)}{4 b^2}+\frac {3 (b c-a d)^2 \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{4 b^{5/2} \sqrt {d}}+\frac {\sqrt {a+b x} (c+d x)^{3/2}}{2 b} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^(3/2)/Sqrt[a + b*x],x]

[Out]

(3*(b*c - a*d)*Sqrt[a + b*x]*Sqrt[c + d*x])/(4*b^2) + (Sqrt[a + b*x]*(c + d*x)^(3/2))/(2*b) + (3*(b*c - a*d)^2
*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(4*b^(5/2)*Sqrt[d])

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {(c+d x)^{3/2}}{\sqrt {a+b x}} \, dx &=\frac {\sqrt {a+b x} (c+d x)^{3/2}}{2 b}+\frac {(3 (b c-a d)) \int \frac {\sqrt {c+d x}}{\sqrt {a+b x}} \, dx}{4 b}\\ &=\frac {3 (b c-a d) \sqrt {a+b x} \sqrt {c+d x}}{4 b^2}+\frac {\sqrt {a+b x} (c+d x)^{3/2}}{2 b}+\frac {\left (3 (b c-a d)^2\right ) \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}} \, dx}{8 b^2}\\ &=\frac {3 (b c-a d) \sqrt {a+b x} \sqrt {c+d x}}{4 b^2}+\frac {\sqrt {a+b x} (c+d x)^{3/2}}{2 b}+\frac {\left (3 (b c-a d)^2\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {c-\frac {a d}{b}+\frac {d x^2}{b}}} \, dx,x,\sqrt {a+b x}\right )}{4 b^3}\\ &=\frac {3 (b c-a d) \sqrt {a+b x} \sqrt {c+d x}}{4 b^2}+\frac {\sqrt {a+b x} (c+d x)^{3/2}}{2 b}+\frac {\left (3 (b c-a d)^2\right ) \operatorname {Subst}\left (\int \frac {1}{1-\frac {d x^2}{b}} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right )}{4 b^3}\\ &=\frac {3 (b c-a d) \sqrt {a+b x} \sqrt {c+d x}}{4 b^2}+\frac {\sqrt {a+b x} (c+d x)^{3/2}}{2 b}+\frac {3 (b c-a d)^2 \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{4 b^{5/2} \sqrt {d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.29, size = 109, normalized size = 0.96 \[ \frac {\sqrt {c+d x} \left (\sqrt {a+b x} (-3 a d+5 b c+2 b d x)+\frac {3 (b c-a d)^{3/2} \sinh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b c-a d}}\right )}{\sqrt {d} \sqrt {\frac {b (c+d x)}{b c-a d}}}\right )}{4 b^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^(3/2)/Sqrt[a + b*x],x]

[Out]

(Sqrt[c + d*x]*(Sqrt[a + b*x]*(5*b*c - 3*a*d + 2*b*d*x) + (3*(b*c - a*d)^(3/2)*ArcSinh[(Sqrt[d]*Sqrt[a + b*x])
/Sqrt[b*c - a*d]])/(Sqrt[d]*Sqrt[(b*(c + d*x))/(b*c - a*d)])))/(4*b^2)

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 306, normalized size = 2.71 \[ \left [\frac {3 \, {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \sqrt {b d} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \, {\left (2 \, b d x + b c + a d\right )} \sqrt {b d} \sqrt {b x + a} \sqrt {d x + c} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x\right ) + 4 \, {\left (2 \, b^{2} d^{2} x + 5 \, b^{2} c d - 3 \, a b d^{2}\right )} \sqrt {b x + a} \sqrt {d x + c}}{16 \, b^{3} d}, -\frac {3 \, {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \sqrt {-b d} \arctan \left (\frac {{\left (2 \, b d x + b c + a d\right )} \sqrt {-b d} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (b^{2} d^{2} x^{2} + a b c d + {\left (b^{2} c d + a b d^{2}\right )} x\right )}}\right ) - 2 \, {\left (2 \, b^{2} d^{2} x + 5 \, b^{2} c d - 3 \, a b d^{2}\right )} \sqrt {b x + a} \sqrt {d x + c}}{8 \, b^{3} d}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(3/2)/(b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[1/16*(3*(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*sqrt(b*d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b*
d*x + b*c + a*d)*sqrt(b*d)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(b^2*c*d + a*b*d^2)*x) + 4*(2*b^2*d^2*x + 5*b^2*c*d
 - 3*a*b*d^2)*sqrt(b*x + a)*sqrt(d*x + c))/(b^3*d), -1/8*(3*(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*sqrt(-b*d)*arctan(
1/2*(2*b*d*x + b*c + a*d)*sqrt(-b*d)*sqrt(b*x + a)*sqrt(d*x + c)/(b^2*d^2*x^2 + a*b*c*d + (b^2*c*d + a*b*d^2)*
x)) - 2*(2*b^2*d^2*x + 5*b^2*c*d - 3*a*b*d^2)*sqrt(b*x + a)*sqrt(d*x + c))/(b^3*d)]

________________________________________________________________________________________

giac [B]  time = 1.25, size = 233, normalized size = 2.06 \[ -\frac {\frac {4 \, {\left (\frac {{\left (b^{2} c - a b d\right )} \log \left ({\left | -\sqrt {b d} \sqrt {b x + a} + \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d} \right |}\right )}{\sqrt {b d}} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d} \sqrt {b x + a}\right )} c {\left | b \right |}}{b^{2}} - \frac {{\left (\sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d} {\left (2 \, b x + 2 \, a + \frac {b c d - 5 \, a d^{2}}{d^{2}}\right )} \sqrt {b x + a} + \frac {{\left (b^{3} c^{2} + 2 \, a b^{2} c d - 3 \, a^{2} b d^{2}\right )} \log \left ({\left | -\sqrt {b d} \sqrt {b x + a} + \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d} \right |}\right )}{\sqrt {b d} d}\right )} d {\left | b \right |}}{b^{3}}}{4 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(3/2)/(b*x+a)^(1/2),x, algorithm="giac")

[Out]

-1/4*(4*((b^2*c - a*b*d)*log(abs(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + (b*x + a)*b*d - a*b*d)))/sqrt(b*d) -
sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*sqrt(b*x + a))*c*abs(b)/b^2 - (sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*(2*b*x
+ 2*a + (b*c*d - 5*a*d^2)/d^2)*sqrt(b*x + a) + (b^3*c^2 + 2*a*b^2*c*d - 3*a^2*b*d^2)*log(abs(-sqrt(b*d)*sqrt(b
*x + a) + sqrt(b^2*c + (b*x + a)*b*d - a*b*d)))/(sqrt(b*d)*d))*d*abs(b)/b^3)/b

________________________________________________________________________________________

maple [B]  time = 0.01, size = 308, normalized size = 2.73 \[ \frac {3 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, a^{2} d^{2} \ln \left (\frac {b d x +\frac {1}{2} a d +\frac {1}{2} b c}{\sqrt {b d}}+\sqrt {b d \,x^{2}+a c +\left (a d +b c \right ) x}\right )}{8 \sqrt {d x +c}\, \sqrt {b x +a}\, \sqrt {b d}\, b^{2}}-\frac {3 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, a c d \ln \left (\frac {b d x +\frac {1}{2} a d +\frac {1}{2} b c}{\sqrt {b d}}+\sqrt {b d \,x^{2}+a c +\left (a d +b c \right ) x}\right )}{4 \sqrt {d x +c}\, \sqrt {b x +a}\, \sqrt {b d}\, b}+\frac {3 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, c^{2} \ln \left (\frac {b d x +\frac {1}{2} a d +\frac {1}{2} b c}{\sqrt {b d}}+\sqrt {b d \,x^{2}+a c +\left (a d +b c \right ) x}\right )}{8 \sqrt {d x +c}\, \sqrt {b x +a}\, \sqrt {b d}}-\frac {3 \sqrt {d x +c}\, \sqrt {b x +a}\, a d}{4 b^{2}}+\frac {3 \sqrt {d x +c}\, \sqrt {b x +a}\, c}{4 b}+\frac {\left (d x +c \right )^{\frac {3}{2}} \sqrt {b x +a}}{2 b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(3/2)/(b*x+a)^(1/2),x)

[Out]

1/2*(d*x+c)^(3/2)*(b*x+a)^(1/2)/b-3/4/b^2*(d*x+c)^(1/2)*(b*x+a)^(1/2)*a*d+3/4/b*(d*x+c)^(1/2)*(b*x+a)^(1/2)*c+
3/8/b^2*((b*x+a)*(d*x+c))^(1/2)/(d*x+c)^(1/2)/(b*x+a)^(1/2)*ln((b*d*x+1/2*a*d+1/2*b*c)/(b*d)^(1/2)+(b*d*x^2+a*
c+(a*d+b*c)*x)^(1/2))/(b*d)^(1/2)*a^2*d^2-3/4/b*((b*x+a)*(d*x+c))^(1/2)/(d*x+c)^(1/2)/(b*x+a)^(1/2)*ln((b*d*x+
1/2*a*d+1/2*b*c)/(b*d)^(1/2)+(b*d*x^2+a*c+(a*d+b*c)*x)^(1/2))/(b*d)^(1/2)*a*d*c+3/8*((b*x+a)*(d*x+c))^(1/2)/(d
*x+c)^(1/2)/(b*x+a)^(1/2)*ln((b*d*x+1/2*a*d+1/2*b*c)/(b*d)^(1/2)+(b*d*x^2+a*c+(a*d+b*c)*x)^(1/2))/(b*d)^(1/2)*
c^2

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(3/2)/(b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more details)Is a*d-b*c zero or nonzero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (c+d\,x\right )}^{3/2}}{\sqrt {a+b\,x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x)^(3/2)/(a + b*x)^(1/2),x)

[Out]

int((c + d*x)^(3/2)/(a + b*x)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (c + d x\right )^{\frac {3}{2}}}{\sqrt {a + b x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(3/2)/(b*x+a)**(1/2),x)

[Out]

Integral((c + d*x)**(3/2)/sqrt(a + b*x), x)

________________________________________________________________________________________